Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The European spallation source (ESS) will be the world’s brightest neutron source and will open a new intensity frontier in particle physics. The HIBEAM collaboration aims to exploit the unique potential of the ESS with a dedicated ESS instrument for particle physics which offers world-leading capability in a number of areas. The HIBEAM program includes the first search in thirty years for free neutrons converting to antineutrons and searches for sterile neutrons, ultralight axion dark matter and nonzero neutron electric charge. This paper outlines the capabilities, design, infrastructure, and scientific potential of the HIBEAM program, including its dedicated beamline, neutron optical system, magnetic shielding and control, and detectors for neutrons and antineutrons. Additionally, we discuss the long-term scientific exploitation of HIBEAM, which may include measurements of the neutron electric dipole moment and precision studies of neutron decays.more » « lessFree, publicly-accessible full text available April 29, 2026
- 
            Neutrino-nucleus cross section measurements are needed to improve interaction modeling to meet the precision needs of neutrino experiments in efforts to measure oscillation parameters and search for physics beyond the Standard Model. We review the difficulties associated with modeling neutrino-nucleus interactions that lead to a dependence on event generators in oscillation analyses and cross section measurements alike. We then describe data-driven model validation techniques intended to address this model dependence. The method relies on utilizing various goodness-of-fit tests and the correlations between different observables and channels to probe the model for defects in the phase space relevant for the desired analysis. These techniques shed light on relevant mismodeling, allowing it to be detected before it begins to bias the cross section results. We compare more commonly used model validation methods which directly validate the model against alternative ones to these data-driven techniques and show their efficacy with fake data studies. These studies demonstrate that employing data-driven model validation in cross section measurements represents a reliable strategy to produce robust results that will stimulate the desired improvements to interaction modeling. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            Abstract Baryon number conservation is not guaranteed by any fundamental symmetry within the standard model, and therefore has been a subject of experimental and theoretical scrutiny for decades. So far, no evidence for baryon number violation has been observed. Large underground detectors have long been used for both neutrino detection and searches for baryon number violating processes. The next generation of large neutrino detectors will seek to improve upon the limits set by past and current experiments and will cover a range of lifetimes predicted by several Grand Unified Theories. In this White Paper, we summarize theoretical motivations and experimental aspects of searches for baryon number violation in neutrino experiments.more » « less
- 
            A key aim of the HighNESS project for the European Spallation Source is to enable cutting-edge particle physics experiments. This volume presents a conceptual design report for the NNBAR experiment. NNBAR would exploit a new cold lower moderator to make the first search in over thirty years for free neutrons converting to anti-neutrons. The observation of such a baryon-number-violating signature would be of fundamental significance and tackle open questions in modern physics, including the origin of the matter-antimatter asymmetry. This report shows the design of the beamline, supermirror focusing system, magnetic and radiation shielding, and anti-neutron detector necessary for the experiment. A range of simulation programs are employed to quantify the performance of the experiment and show how background can be suppressed. For a search with full background suppression, a sensitivity improvement of three orders of magnitude is expected, as compared with the previous search. Civil engineering studies for the NNBAR beamline are also shown, as is a costing model for the experiment.more » « less
- 
            Large neutrino liquid argon time projection chamber (LArTPC) experiments can broaden their physics reach by reconstructing and interpreting MeV-scale energy depositions, or blips, present in their data. We demonstrate new calorimetric and particle discrimination capabilities at the MeV energy scale using reconstructed blips in data from the MicroBooNE LArTPC at Fermilab. We observe a concentration of low-energy ( ) blips around fiberglass mechanical support struts along the time projection chamber edges with energy spectrum features consistent with the Compton edge of 2.614 MeV decay rays. These features are used to verify proper calibration of electron energy scales in MicroBooNE’s data to few percent precision and to measure the specific activity of in the fiberglass composing these struts, . Cosmogenically produced blips above 3 MeV in reconstructed energy are used to showcase the ability of large LArTPCs to distinguish between low-energy proton and electron energy depositions. An enriched sample of low-energy protons selected using this new particle discrimination technique is found to be smaller in data than in dedicated cosmic-ray simulations, suggesting either incorrect modeling of incident cosmic fluxes or particle transport modeling issues in eant4. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available February 1, 2026
- 
            Abstract The NNBAR experiment for the European Spallation Source will search for free neutrons converting to antineutrons with a sensitivity improvement of three orders of magnitude compared to the last such search. This paper describes progress towards a conceptual design report for NNBAR. The design of a moderator, neutron reflector, beamline, shielding and annihilation detector is reported. The simulations used form part of a model which will be used for optimisation of the experiment design and quantification of its sensitivity.more » « less
- 
            We present a measurement of neutral pion production in charged-current interactions using data recorded with the MicroBooNE detector exposed to Fermilab’s booster neutrino beam. The signal comprises one muon, one neutral pion, any number of nucleons, and no charged pions. Studying neutral pion production in the MicroBooNE detector provides an opportunity to better understand neutrino-argon interactions, and is crucial for future accelerator-based neutrino oscillation experiments. Using a dataset corresponding to protons on target, we present single-differential cross sections in muon and neutral pion momenta, scattering angles with respect to the beam for the outgoing muon and neutral pion, as well as the opening angle between the muon and neutral pion. Data extracted cross sections are compared to generator predictions. We report good agreement between the data and the models for scattering angles, except for an over-prediction by generators at muon forward angles. Similarly, the agreement between data and the models as a function of momentum is good, except for an underprediction by generators in the medium momentum ranges, 200–400 MeV for muons and 100–200 MeV for pions. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            We present a deep learning-based method for estimating the neutrino energy of charged-current neutrino-argon interactions. We employ a recurrent neural network (RNN) architecture for neutrino energy estimation in the MicroBooNE experiment, utilizing liquid argon time projection chamber (LArTPC) detector technology. Traditional energy estimation approaches in LArTPCs, which largely rely on reconstructing and summing visible energies, often experience sizable biases and resolution smearing because of the complex nature of neutrino interactions and the detector response. The estimation of neutrino energy can be improved after considering the kinematics information of reconstructed final-state particles. Utilizing kinematic information of reconstructed particles, the deep learning-based approach shows improved resolution and reduced bias for the muon neutrino Monte Carlo simulation sample compared to the traditional approach. In order to address the common concern about the effectiveness of this method on experimental data, the RNN-based energy estimator is further examined and validated with dedicated data-simulation consistency tests using MicroBooNE data. We also assess its potential impact on a neutrino oscillation study after accounting for all statistical and systematic uncertainties and show that it enhances physics sensitivity. This method has good potential to improve the performance of other physics analyses. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available November 1, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
